Refine Your Search

Topic

Author

Search Results

Technical Paper

Connected Vehicles - A Testing Approach and Methodology

2021-09-22
2021-26-0450
With the introduction of Connected Vehicles, it is possible to extend the limited horizon of vehicles on the road by collective perceptions, where vehicles periodically share their information with other vehicles and servers using cloud. Nevertheless, by the time the connected vehicle spread expands, it is critical to understand the validation techniques which can be used to ensure a flawless transfer of data and connectivity. Connected vehicles are mainly characterized by the smartphone application which is provided to the end customers to access the connectivity features in the vehicle. The end result which is delivered to the customer is through the integrated telematics unit in the vehicle which communicates through a communication layer with the cloud platform. The cloud server in turn interacts with the final application layer of the mobile application given to the customer.
Technical Paper

Regulatory Norms and Effect on Transmission Component Validation

2021-09-22
2021-26-0460
With the advent of BS VI regulations, automotive manufacturers are required to innovate the powertrains, fuel systems, exhaust and its after treatment systems to meet the regulatory requirements. The exhaust regulations can be met either by reducing the exhaust gases being generated by the engine (attacking the source) or by treating the exhaust gases in after treatment devices. The choice of the opted system varies with the manufacturer. The after-treatment devices such as catalytic converters are generally mounted in the engine compartment to take advantage of high temperature of exhaust gases to yield the reactions. Such an arrangement imposes a lot of thermal load on the peripheral components such as gearshift cables, bearings, oil seals, driveshafts etc. Thermal shields or thermal sleeve are used to address thermal issue and to protect transmission components.
Technical Paper

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-09-22
2021-26-0387
Automotive door seal has an important function which is used extensively where interior of the vehicle is sealed from the environment. Problem with door seal system design will cause water leakage, wind noise, hard opening or closing of doors, gap and flushness issue which impair customer’s satisfaction of the vehicle. Moreover, improper design of seal can lead to difficulty in installation of door seal on body panel. The design prudence and manufacturing process are important aspect for the functionality and performance of sealing system. However, the door sealing system involves many design and manufacturing variables. At the early design stage, it is difficult to quantify the effect of each of the multiple design variables. As there are no physical prototypes during rubber profile beading-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for door seal.
Technical Paper

Engine Mount Stiffness Effect on Joint Integrity and Durability

2021-09-22
2021-26-0514
Powertrain mounts locations and stiffness in vehicle plays very important role in improving vehicle noise and vibration, which is caused by engine firing forces and road disturbances. Once locations are finalized, based on initial calculation and packaging then it is very much critical to play with mount stiffness to achieve required NVH level in vehicle. This paper describes the effect of mount stiffness on the bolted joint integrity. Stiffness fine tuning is done to improve vehicle level NVH and various iteration are done with change in stiffness values of A, B and C mounts. When stiffness specifications are finalized, it is recommended to acquire road load data on the finalized stiffness mount and check for bolted joint integrity since load signature is varying significantly on mount w.r.t stiffness change. If we change mount stiffness value from 128N/mm to 98N/mm, then loads on particular mount is getting increased from 4.5KN to 6.5KN in one of the track testing.
Technical Paper

Estimation of End of Life of Lithium-Ion Battery Based on Artificial Neural Network and Machine Learning Techniques

2021-09-22
2021-26-0218
Various vehicle manufacturers are launching electric vehicles, which are more sustainable and environmentally friendly. The major component in electric vehicles is the battery, and its performance plays a vital role. Usually, the end of life of a battery in the automobile sector is when the battery capacity reaches 80% of its maximum rated capacity. The capacity of a lithium-ion cell declines with the number of cycles. So, a semi-empirical model is developed for estimating the maximum stored capacity at the end of each cycle. The parameters considered in the model explain the changes in battery internal structure, like capacity losses at different conditions. The capacity estimated using the semi-empirical model is further taken as the inputs for estimating capacity using the Artificial Neural Network (ANN) and Machine Learning (ML) techniques i.e., Linear Regression (LR), Gaussian Process Regression (GPR), Support Vector Machine methods (SVM).
Technical Paper

Compliance of ISO 26262 Safety Standard for Electric Power Steering System

2021-09-22
2021-26-0025
This paper is an application of ISO 26262 functional safety standards for fail-safe design, development and validation of Electric Power Assisted Steering (EPAS) System. As part of safety feature to save lives, prevent injuries and reduce economic loss due to accidents, many research institutes are working to ensure the safety and reliability of emerging safety-critical Electronic Control Systems in automobile applications. As, Advanced Driver Assistance Systems (ADAS) and other emerging technologies are introduced in the automobile application, the overall safety of these advanced electronic systems relies on the vehicle safety systems, such as steering systems. This paper outlines the approach of performing the Hazard Analysis & Risk Assessment (HARA) and developing a Functional Safety Concept. This approach incorporates several analysis methods, including Hazard and Operability study, Functional Failure Modes and Effects Analysis.
Technical Paper

Challenges and Approaches of Electric Vehicles Powertrain Mount System Optimization for NVH, Buzz Squeak Rattle and Durability

2021-08-31
2021-01-1085
In electric vehicles, the powertrain mounting system design has challenges different from conventional internal combustion engine (ICE) powertrains. Due to the absence of source noise, the customer predominantly experiences the buzz, squeak and rattle (BSR) noise. The 6 degrees of freedom (DOF) modal frequency target is less stringent than a three-cylinder or four-cylinder ICE powertrain. The durability loads in EV also differ due to less powertrain weight. In this paper, a study has been carried out about balancing all three main performance parameters of modal decoupling, BSR and durability through powertrain mount design optimization. The article shows that a carryover ICE powertrain mount has typical issues in Electric Vehicle (EV). A case study has discussed in detail how to manage those issues. Finally, it is concluded that a particular focus is required during an early stage of mount design to address these challenges for an EV.
Technical Paper

Automotive Buzz, Squeak and Rattle Attenuation Technique from Front Suspension Assembly in Passenger Car

2021-08-31
2021-01-1087
BSR noise is an important parameters for customer discomfort. According to a market survey, squeaks and rattles are the third most important customer concern in cars after six months of ownership. The high quality acoustic environment of a car, annoying noises like buzz, squeak, and rattle is related to various parameters such as material assembly, tolerance, aging, humidity, surface contact, and surface hardness. BSR is originated from frictional movement between two parts or from the impact between two parts. The rattle noise is caused when surfaces close to each other move perpendicular to each other due to insufficient attachments or insufficient structural strength. In our study, we have shown the impact of various front suspension component in front suspension assembly on BSR noise and also the method to detect and attenuate the same. A methodical analysis process is shown to identify the contributing part and resolve the BSR issue.
Technical Paper

A Comparative Study of Cradle and Sub Frame Type Powertrain Mounting System on Electric Vehicle

2021-08-31
2021-01-1022
The growing demand of fuel and cost saving on vehicle, today’s vehicle manufacturer are working on various weight reduction initiative in EV. Lighter weight vehicle have bigger challenges to meet NVH requirement. There are two types of EV called modified and adopted EV’s are commonly in use. The sub frame type of EV system comes under the category of modified EV. In this paper, a mounting system is studied and compared for a cradle type EV as well as sub frame or saddle type EV. MATLAB based optimization tools are used for parameter optimization. The focus is put on the optimization of mounting system location and stiffness for energy optimization, CoG and TRA-EA optimization. The best engine mounting system is compared and adopted based on simulation. 12 DOF studied to address high frequency resonance issues for a sub frame type EV. Finally robustness of the system is checked based on various simulation and optimization.
Technical Paper

Systematic Approach to Overcome Cavitation Noise Issue in Decoupled Hydraulic Mount

2021-08-31
2021-01-1027
NVH refinement of passenger vehicle is very much essential to level that customer did not find any irritation. Engine mounting selection and design is critical to achieve targeted NVH performance. Most of OEM’s are using properly tuned hydromount to have best idling NVH performance. Hydro-mount design should be tuned at problematic frequency where we can get the very low dynamic stiffness and can get the required performance. Hydromount should be designed carefully otherwise there will be abnormal noise due to cavitation effect. Cavitation noise is such a noise which is very difficult to identify that it is coming from mount. Cavitation is the formation and collapse of vapor bubbles in a working fluid when local static pressure falls below the vapor pressure of the working fluid. Systematic approach is presented in this paper to detect cavitation noise from hydraulic mount and how to overcome the same.
Technical Paper

Practical Approach to Enhance Gear Shift Quality in Automatic Transmissions

2021-04-06
2021-01-0688
Passenger utility vehicles like car, SUVs, MPVs are used in wide application all over the world. Luxuries are becoming essential features of product mix along with comfort and ergonomics. Customer desires best shift quality with emerging technologies like AT, DCT, CVT, etc. and every OEM is working hard to achieve it. It is very difficult to satisfy the customer desire because of diversities in demographics and geographic. Gear shift quality (GSQ) is very crucial touch point in overall drive feel of vehicle. It consist of various parameters like mode selection feel, precision, comfort, select Noise, etc. It demands tradeoff practices among various parameters as stated. In this paper, external mode selection system of automatic transmission is explained. Various contributing parameters are explained with practical design approach for detent profile, mode selection mechanism, cable & dampers, etc.
Journal Article

Study of Dynamics Stiffness and Shape Factor of Rubber Mounts to Address High-Frequency Resonance Issue in Electric Powertrain Mounting System

2020-09-25
2020-28-0341
Electric motor mounts resonate at high frequency in the range of 600 to 1000Hz with motor excitation frequency resulting in isolation performance deterioration. There is a selection process of motor mounts such that the force-transfer under transient torque reduced and also avoids high-frequency resonance. The rubber dynamic stiffness plays a significant role in excitation frequency. Rubber shape factor and compound directly contribute towards the dynamic stiffness properties of the mount. Isolation efficiency depends on force transfer to the body and resonance phenomenon. In this paper, the rubber shape of motor mounts, which affect progression characteristics as well as high-frequency resonance, is discussed. The wings-effect of rubber bushes discussed which can be tuned to get the desired frequency shift in order to avoid resonance.
Technical Paper

Cold Idle Gear Rattle in Manual Transmission Passenger Car-Temperature Based Phenomenon

2020-09-15
2020-01-2245
Gear rattle is due to impact noise of unloaded gears in transmission having freedom to move in backlash region. Engine order vibrations in the presence of backlash in meshing pairs induce the problem. It is a system behavior wherein flywheel torsional vibrations, the pre-damper characteristics and transmission drag torque plays a vital role in an engine idle condition (hot & cold). Idle rattle is a severe issue, which is highly noticeable in cold condition or after 1st engine crank. Gear rattling observed in idle condition is idle gear rattle or neutral gear rattle, specifically in cold condition is a “Cold idle rattle” and this is one of the critical noise parameters considered for entire vehicle NVH. Damper mechanism in the clutch, is used to serve better isolation (by reducing the input excitation to transmission parts) of vibrations between engine and transmission their by reducing gear rattle intensity.
Technical Paper

Experimental Analysis of HVAC System Level Noise in Mobile Air-Conditioning (MAC) System

2020-08-18
2020-28-0035
With the advent of new technologies and rigorous research and development work going on vehicle engines, cars are becoming quieter and more refined than ever before. This has led to the observance of subjective noises being audible to passenger compartment which were earlier masked behind engine noise. The vehicle HVAC system has several moving parts and transient flow of refrigerant which can cause certain types of irritant noise. Thus having a refinement in of air-conditioning (AC) system would aid us in cutting down on this parasitic noise source. Thus noise refinement should be one of the important parameters during the design and development of the Heating, Ventilation and Air-Conditioning (HVAC) system for a vehicle program.
Technical Paper

Methodology to Quantify the Undesirable Effects of the Localized Inefficiency of Heat Pick-Up in Suction Line on an Automotive Air Conditioning System

2020-08-18
2020-28-0036
The automotive application places very special demands on the air conditioning system. As is the case with any other process, system efficiency is very important and the automotive air-conditioning application is no exception. While the characteristics of all the major components in the air conditioning system like compressor, condenser, evaporator and blower contribute to overall system efficiency, localized inefficiencies do play a part and so must be kept to a minimum, especially in this day and age when extra emphasis is being laid on sustainability. One such phenomenon that contributes to the system inefficiency is heat pick-up in suction line. Since the temperature at the evaporator-outlet is quite lower than ambient and also its surroundings (steering system pipes and hoses, engine, air intake pipes and so on), the refrigerant picks up heat as it moves along the suction line up to the compressor inlet. This heat pick-up is detrimental to the overall system performance.
Technical Paper

Optimization of Engine Mounting System for First Gear Launch Judder

2020-04-14
2020-01-0416
Normal engine mounting system is designed to carry loads of powertrain in all driving conditions and also isolate the vibrations of powertrain. Softer mounts are good for vibration isolation but it is not recommended to have softer mounts because durability will be affected adversely. Optimum stiffness needs to be finalized which will have balance between durability and performance. In addition to durability many performance parameters needs to be checked during the time of development. This study includes the development of engine mounting system for elimination of drive away judder in first gear. Maximum peak torque value for the drive-away event is in the range of 80Nm - 120Nm. In the worst case, this peak torque can reach to maximum 170Nm depending on maneuver, engine rpm is around 1100-1200. Steering wheel, instrument panel and whole vehicle cabin will vibrate for few seconds and then vehicle will run smoothly.
Technical Paper

Electro-Magnetic Parking Brake System for Electric Vehicles

2019-01-09
2019-26-0119
Regular vehicle has the advantage of Engine resistance even when it is not fired, hence chances of vehicle roll back on gradients will be minimized. This is not the case for Electric vehicles, which uses an electric motor that does not have any resistance offered to wheels that prevent vehicle roll back on gradient. This leads to increased load on the conventional hydraulic brakes due to absence of engine inertia. Hence, there is a need for a low cost and reliable automatic braking system which can help in holding the vehicle and assists the driver during launch in case he need to stop at a gradient. An Electromagnetic brake (EM brake) system can be used as a solution for the above-mentioned requirement. EM brake can provide hill hold and hill assist effect in addition to automatic parking brake application when the vehicle is turned-off. This system will assist anyone who need to halt the vehicle at a gradient and then relaunch it without much struggle.
Technical Paper

Refurbished and Repower: Second Life of Batteries from Electric Vehicles for Stationary Application

2019-01-09
2019-26-0156
Rising environmental concerns and depleting natural resources have resulted in faster adoption of green technologies. These technologies are pushed by the government of states through certain schemes and policies as to make the orbit shift ensuring greener environment in near future. Major actions can be easily seen in transportation sector. Hybrid Electric Vehicle (EV), EV and Fuel cell EV are being deployed on roads rapidly but even though some challenges are still unsolved such as battery cost, fast charging and life cycle of the automotive battery. Automotive batteries (Lithium ions) are declared as unfit for automotive usage after the loss of 20% to 15% of their initial capacity. Still 80% to 85% of battery capacity can be utilized in stationary applications other than automotive. Stationary application doesn’t demand high current density or energy density from the battery pack as of automotive requirements.
Journal Article

Gearshift Quality Sensitivity Analysis

2019-01-09
2019-26-0328
Gearshift quality is a perceived quality parameter. Hence, is getting much importance because of the increased awareness about comfortable and refined driving experience, especially in the case of passenger cars. When the topic of gearshift feeling is broached in manual transmission vehicles, synchronizer pack (shifter sleeve, engaging gear, strut, synchronizer and gear synchro ring assembly) have been the focus point for optimization. Synchronizer type (single, double or triple cone), lining material, datch chamfer angle of shifter sleeve/synchro ring of gear/synchronizer, all of these have been extensively studied in the past to improve the gearshift quality. With stringent timelines for vehicle development, OEMs prefer to use off-the-shelf powertrain systems developed by powertrain manufacturers. Due to this, avenues to refine gearshift feel gets reduced to a large extent and hence refinement becomes difficult.
Technical Paper

Transmission Breather Evaluation

2019-01-09
2019-26-0339
Breather assembly is mounted on transmission to maintain the pressure equilibrium inside transmission. Breather allows the transmission to breathe air when the air inside transmission expands or contracts due to heating and cooling of lubricating oil during vehicle running. Breather allows the hot air to escape and cool air to enter into the transmission to prevent overheating issue. Failure of breather assembly can lead to pressure buildup inside transmission and further leading to leakage from transmission oil seals. Oil leakage through the breather assembly is governed by parameters such as opening pressure, location and orientation of breather etc. The transmission undergoes different operating conditions of input speed, load, temperature, inclination etc. Also, breather assembly is designed and positioned in such a way that there is no leakage through breather due to oil splash inside the transmission.
X